

# Model No.12 Course Specifications : Analysis and Design of Electric Machines

Alfarabi for Quality Assurance and Accreditation System - at 16/2/2014 4:57 PM

**University**: Benha university

**Faculty**: Shoubra Faculty of Engineering

**Department**: Electrical Engineering Department

1- Course Data

Course Title: Analysis and Design of Electric Machines

Code: EPE 322

Lecture: 4 Tutorial: 2 Practical: - Total: 6

**Program on which the course is given:** B.Sc. Electrical Engineering (Electrical Power and machines)

Major or minor element of program: N.A.

**Department offering the program:** Electrical Engineering Department **Department offering the course:** Electrical Engineering Department

Academic year / level: Third Year / Second Semester

Date of specifications approval: 20/6/2010

#### 2- Course Aim

By the end of the course the students will be able to:

- give the method of analysis and design of universal motors.
- Analyze the two-phase induction motors.
- analye and design of single-phase induction motors.
- Analyze the small type transformers design.
- Illustrate the analysis of linear induction motors.
- Illustrate the analysis of stepper motors.

#### 3- Intended Learning Outcomes of Course (ILOS)

#### a- Knowledge and Understanding

- a.1) Demonstarte design procedure related to the Analysis and Design of Electric Machines disciplines. (a.4)
- a.2) Demostrate knowledge of Single-phase Induction Motors and universal motors. (a.8)
- a.3) Describe the Analytical and computer methods appropriate for Design of Small single-phase Transformers.. (a.13)
- a.4) List the Design methods for Stepper Motors, induction motors. (a.14)
- a.5) Give the Principles of operation and performance specifications of electrical and electromechanical engineering systems. (a.15)

#### **b- Intellectual Skills**

- b.1) Select appropriate mathematical and computer-based methods for modeling and analyzing problems. (b.1)
- b.2) Select appropriate solutions for engineering problems based on analytical thinking.(b.2)
- b.3) Think in a creative and innovative way in problem solving and design.(b.3)
- b.4) Combine, exchange, and assess different ideas, views, and knowledge from a range of sources.(b.4)
- b.5) Identify and formulate engineering problems to solve problems in the field of electrical power and machines engineering.(b.13)
- b.6) Analyze design problems and interpret numerical data and test and examine components, equipment and systems of electrical power and machines. (b.14)

#### c- Professional Skills

- c.1) Apply knowledge of mathematics, science, information technology, design, business context and engineering practice to solve engineering problems.(c.1)
- c.2) Professionally merge the engineering knowledge, understanding, and feedback to improve design, product and/or services.(c.2)
- c.3) Create and/or re-design a process, component or system, and carry out specialized engineering designs.(c.3)
- c.4) Design and perform experiments, as well as analyze and interpret experimental results related to electrical power and machines systems.(c.13)
- c.5) Test and examine components, equipment and systems of electrical power and machines.(c.14)
- c.6) Apply modern techniques, skills and engineering tools to electrical power and machines engineering systems.(c.17)

### **4- Course Contents**

| No       | Topic                                         | No. of<br>hours | ILOs                  | Teaching / learning methods and strategies | Assessment method            |  |  |  |  |
|----------|-----------------------------------------------|-----------------|-----------------------|--------------------------------------------|------------------------------|--|--|--|--|
| 1        | Universal Motors.                             | 6               | a3, b2, c1,<br>c3     | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 2        | Universal Motors.                             | 6               | a3, b2, c1,<br>c3     | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 3        | Universal Motors.                             | 6               | a3, b2, c1,<br>c3     | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 4        | Two-phase Induction Motors.                   | 6               | a4, b1, b3,<br>c2     | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 5        | Single-phase Induction Motors.                | 6               | a5, b5, c2,<br>c4     | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 6        | Single-phase Induction Motors.                | 6               | a5, b5, c2,<br>c4     | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 7        | Single-phase Induction Motors.                | 6               | a5, b5, c2,<br>c4     | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 8        | Mid term exam                                 | 3               | a1, a2, b5,<br>b6     |                                            | 20                           |  |  |  |  |
| 9        | Single-phase Induction Motors.                | 6               | a5, b5, c2,<br>c4     | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 10       | Design of Small single-<br>phse Transformers. | 6               | a1, b4, b6,<br>c4,    | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 11       | Linear Induction Motors.                      | 6               | a1, b6, b4,<br>c4     | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 12       | Stepper Motors.                               | 6               | a2, b5, b4,<br>c5, c6 | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 13       | Stepper Motors.                               | 6               | a2, b5, b4,<br>c5, c6 | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 14       | Stepper Motors.                               | 6               | a2, b5, b4,<br>c5, c6 | Presentation board, computer and data show | Home Assignments,<br>Quizzes |  |  |  |  |
| 15<br>16 |                                               |                 |                       | exam                                       |                              |  |  |  |  |

# **5- Teaching and Learning Methods**

Modified Lectures Practical training / laboratory

Class activity
Case study
Assignments / homework

#### 6- Teaching and Learning Methods of Disables

None

#### 7- Student Assessment

#### a- Student Assessment Methods

Assignments to assess knowledge, intellectual skills and proffesional and practical skills.

Quiz to assess knowledge, intellectual skills and proffesional and practical skills.

Mid-term exam to assess knowledge, intellectual skills and proffesional and practical skills. Final exam to assess knowledge, intellectual skills and proffesional and practical skills.

#### b- Assessment Schedule

Assessment 1 on weeks 2, 5, 9, 11

Assessment 2 Quizzes on weeks 4, 6, 10, 12

Assessment 3 Mid-term exam on week 8

Assessment 4 Final exam on week 15

#### c- Weighting of Assessments

| Mid- Term Examination   | 20%    |
|-------------------------|--------|
| Final- Term Examination | 66.67% |
| Assignments             | 6.33%  |
| Quizzes                 | 7%     |
| Total                   | 100%   |

#### 8- List of References

#### 8.1 Course Notes

• Handouts prepared by the instructor.

#### 8.2 Essential Books (Text Books)

- 1- J. F. Gieros, "Linear Induction Drives", Clarendon Press, Oxford, USA, 1994.
- 2- P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley, 1997.
- 3- A. E. Fitzgerald et al., "Electric Machinery", 6th Edition, McGraw Hill, 2003.
- 4- S. J. Chapman, "Electric Machinery Fundamentals", McGraw Hill, 2004.
- 5- P. Acarnely," Stepping Motors: A guied to Theory and Practice ", IET, 4<sup>th</sup> Edition, 2007.
- 6- T. Wildi," Electrical Machines, Drive and Power Systems", Prentice Hall. 2008.

#### 8.3 Recommended Books

- 1- P. C. Krause et al., "Analysis of Electric Machinery and Drives", IEEE Press, 2nd Edition, 2002.
- 2- A. Emadi, "Energy-efficient Electric Motors", Marcel Dekker, 3rd Edition, 2005.
- 3- J. F. Gieras, "Advancements in Electrical Machines", Springer, 2008.
- 4- I. Boldea and L. N. Tutelea "Electric Machines: Steady State, Transients, and Design with MATLAB", CRC Press, 2009.



# Model No.11A Course Specifications: Analysis and Design of Electric Machines

Alfarabi for Quality Assurance and Accreditation System - at 16/2/2014 4:57 PM

**University**: Benha university

Faculty: Shoubra Faculty of Engineering

**Department**: Electrical Engineering Department

Matrix of Knowledge and Skills of the course

| No.      | ·                                         |           | Basic<br>Knowledge | Intellectual | Professional Skills |
|----------|-------------------------------------------|-----------|--------------------|--------------|---------------------|
| 1        | Universal Motors.                         | 6         | a3                 | b2           | c1,c3               |
| 2        | Universal Motors.                         | 6         | a3                 | b2           | c1,c3               |
| 3        | Universal Motors.                         | 6         | a3                 | b2           | c1,c3               |
| 4        | Two-phase Induction Motors.               | 6         | a4                 | b1,b3        | c2                  |
| 5        | Single-phase Induction Motors.            | 6         | a5                 | b5           | c2,c4               |
| 6        | Single-phase Induction Motors.            | 6         | a5                 | b5           | c2,c4               |
| 7        | Single-phase Induction Motors.            | 6         | a5                 | b5           | c2,c4               |
| 8        | Mid-term exam                             | 3         | a1, a2             | B5, b6       |                     |
| 9        | Single-phase Induction Motors.            | 6         | a5                 | b5           | c2,c4               |
| 10       | Design of Small single-phse Transformers. | 6         | a1                 | b4,b6        | c4                  |
| 11       | Linear Induction Motors.                  | 6         | a1                 | b4,b6        | c4                  |
| 12       | Stepper Motors.                           | 6         | a2                 | b4,b5        | c5,c6               |
| 13       | Stepper Motors.                           | 6         | a2                 | b4,b5        | c5,c6               |
| 14       | Stepper Motors.                           | 6         | a2                 | b4,b5        | c5,c6               |
| 15<br>16 | Fina                                      | l -term e | exam               |              |                     |

### Matrix of course content and ILO's

Course Title: Analysis and Design of Electric Machines

Code: EPE 322

Lecture: 4 Tutorial: 2 Practical: - Total: 6

**Program on which the course is given:** B.Sc. Electrical Engineering (Electrical Power and machines)

Major or minor element of program: N.A.

**Department offering the program:** Electrical Engineering Department **Department offering the course:** Electrical Engineering Department

Academic year / level: Third Year / Second Semester

**Date of specifications approval:** 20/6/2010

| Course content                           |   | ILO a's |          |          |          |   | ILO b's  |          |          |          |   |          |          | ILO c's  |   |   |   |  |  |
|------------------------------------------|---|---------|----------|----------|----------|---|----------|----------|----------|----------|---|----------|----------|----------|---|---|---|--|--|
|                                          | 1 | 2       | 3        | 4        | 5        | 1 | 2        | 3        | 4        | 5        | 6 | 1        | 2        | 3        | 4 | 5 | 6 |  |  |
| Universal Motors.                        |   |         | <b>√</b> |          |          |   | <b>√</b> |          |          |          |   | <b>√</b> |          | <b>√</b> |   |   |   |  |  |
| Two-phase Induction Motors               |   |         |          | <b>√</b> |          | ✓ |          | <b>✓</b> |          |          |   |          | ✓        |          |   |   |   |  |  |
| Single-phase Induction Motors.           |   |         |          |          | <b>√</b> |   |          |          |          | ✓        |   |          | <b>√</b> |          | ✓ |   |   |  |  |
| Design of Small single-phse Transformers | ✓ |         |          |          |          |   |          |          | <b>✓</b> |          | ✓ |          |          |          | ✓ |   |   |  |  |
| Linear Induction Motors.                 | ✓ |         |          |          |          |   |          |          | 1        | 477      | ✓ |          |          |          | ✓ |   |   |  |  |
| Stepper Motors.                          |   | ✓       |          |          |          |   |          |          | <b>√</b> | <b>√</b> |   |          |          |          |   | ✓ | ✓ |  |  |

## Matrix of course aims and ILO's

Course Title: Analysis and Design of Electric Machines Code: EPE 322

Lecture: 4 Tutorial: 2 Practical: - Total: 6
Program on which the course is given: B.Sc. Electrical Engineering (Electrical Power and machines)

Major or minor element of program: N.A.

**Department offering the program:** Electrical Engineering Department **Department offering the course:** Electrical Engineering Department

Academic year / level: Third Year / Second Semester

**Date of specifications approval:** 20/6/2010

| Course aims                                                 |   | ILO a's |          |          |   |          | ILO b's  |          |          |          |          | ILO c's  |          |          |          |   |   |  |
|-------------------------------------------------------------|---|---------|----------|----------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|---|--|
|                                                             | 1 | 2       | 3        | 4        | 5 | 1        | 2        | 3        | 4        | 5        | 6        | 1        | 2        | 3        | 4        | 5 | 6 |  |
| give the method of analysis and design of universal motors. |   | 4.5     | <b>✓</b> |          |   |          | <b>✓</b> |          |          |          |          | <b>✓</b> |          | <b>✓</b> |          |   |   |  |
| Analyze the two-phase inductiom motors.                     |   |         |          | <b>√</b> |   | <b>√</b> |          | <b>✓</b> |          |          |          |          | <b>√</b> |          |          |   |   |  |
| analye and design of single-phase induction motors.         |   |         |          |          | 1 |          | 100      |          |          | <b>√</b> |          |          | <b>√</b> |          | <b>√</b> |   |   |  |
| Analyze the small type transformers design.                 | ✓ |         |          |          |   |          |          |          | <b>✓</b> |          | ✓        |          |          |          | ✓        |   |   |  |
| Illustrate the analysis of linear induction motors.         | ✓ |         |          |          |   |          |          |          | <b>√</b> |          | <b>√</b> |          |          |          | ✓        |   |   |  |
| Illustrate the analysis of stepper motors.                  |   | ✓       |          |          |   |          |          |          | ✓        | ✓        |          |          |          |          |          | ✓ | ✓ |  |

**Course coordinator:** Prof. Dr. Ibrahim Abdel-Moneim Abdel-Halim

Course instructor: Dr. Mohammed Eissa Elfaraskoury
Head of department: Prof. Dr. Sayed Abo-elsoud Ward